Challenges of Wireless Security

April 2002

Paul Fahn
Director, Sales and Business Development
Certicom Corp.
Cryptographic Algorithms

• Symmetric Key
 – DES, 3DES, RC4, AES, …
 – Encryption, decryption
 – Fast and “lightweight”

• Public Key
 – RSA, ECC, DH, DSA
 – Digital signatures, verification
 – Key management
 – Computation intensive
Crypto bottlenecks

• Security protocols start with a few public key operations, followed by many private key
 – SSL, IPsec

• Public key operations are the bottleneck

• Problem: Key sizes grow over time
 – RSA: 512 → 1024 → 2048
Security in the “Wired” World

Based on three assumptions:

1. Client has reasonable processing capabilities
2. Client has reasonable bandwidth capabilities
3. Client has reasonable storage capabilities

These do not hold in many wireless environments
Wireless: New Constraints

- Limited processing capabilities
- Bandwidth is limited
- High latency networks
- Storage capabilities are limited

Challenge:

New solutions could introduce interoperability problem with legacy systems
Wireless Constraint: Limited Processing and Power

Algorithm Choice

- RSA
 - signature and key generation very heavy
 - burdens grow as future key size increases
 - ok for server authentication

- ECC
 - more efficient for signatures and key generation
 - local key generation for non-repudiation
 - encourages use of client authentication and m-commerce

- AES
 - efficient new symmetric algorithm
 - large key size also supports increased security requirements
Wireless Constraint: Bandwidth and Latency

• Latency: minimize the number of messages
 – less “chatty” protocols. Ex: WTLS vs. SSL
 – use WTLS class III handshake as certificate request
 – short-lived certificates vs. cert validation

• Bandwidth: minimize the size of the messages
 – non-ASN.1 certificates, cert requests, etc.
 – do not send certificate chains
 Certificate URL’s
Wireless Constraint: Storage on Client Device

- Cell phones, PDA’s, SIM cards
- Minimize the code needed on the client devices
 - Platform-optimized code
 - Non-ASN.1 formats
- Reduce the size of the keys, certificates stored on the clients
 - ECC: smaller key sizes
 - WTLS/WAP certificates
 - Certificate URL’s
Elements of Traditional PKI

Message Formats
- Abstract Syntax Notation (ASN.1)
- Public Key Cryptography Standard (PKCS) 10, Certificate Management Protocol (CMP), etc.
- X.509 certificates

• Underlying Transport
 - HTTP
 - TCP – “reliable” transport
WAP PKI Server Solution

• Do not reinvent
 – Leverage off existing standards and infrastructure

• New component: “PKI Portal”
 – Sits between wireless client and existing PKI infrastructure
 – Converts the Wireless PKI protocol to wired protocols
 – Returns “certificate URL” instead of certificate
 – Support for WTLS server certificates
Wireless PKI Architecture with PKI Portal
Wireless Java: J2ME

Problems:

– Lack of security standards
– Performance issues of pure java code
 • Public key crypto algorithms
– Lack of standardized interface to native code
 • Portability threatened

Put crypto inside the KVM. API?
Questions?

Paul Fahn
Certicom Corp